斯坦福Serena Yeung帶你認識神經網絡 · 2017CS231n 第4彈
雷鋒網CS231n 2017雙語字幕版獨家上線
斯坦福Serena Yeung
帶你認識神經網絡
跟著推算一遍
馬上學會反向傳播算法
?▼
上手視頻約 2 分鐘,大家做好筆記
大滿足的全系列完整視頻前往
▼▼▼??
www.mooc.ai/course/268
課后習題討論問答猛戳
▼▼▼? ?
www.mooc.ai/bbs
什么是CS231n 2017?
CS231n的全稱是 CS231n:?Convolutional Neural Networks for Visual Recognition,即面向視覺識別的卷積神經網絡。
該課程是斯坦福大學計算機視覺實驗室推出的課程。需要注意的是,雷鋒字幕組這次翻譯的是 2017 春季(4 月至 6 月)的最新版本。
引用課程主頁上的官方課程描述如下:
計算機視覺已經在我們的社會中無處不在,并廣泛運用在搜索、圖像理解、應用程序、測繪、醫藥、無人機和自動駕駛汽車等領域。這些應用程序的核心技術是視覺識別任務,如圖像分類、圖像定位和圖像檢測。近期,神經網絡(又名 “深度學習”)方法上的進展極大地提高了這些代表最先進水平的視覺識別系統性能。
本課程深入探討深度學習架構的細節問題,重點學習視覺識別任務(尤其是圖像分類任務)的端到端學習模型。在為期 10 周的課程中,學生將學習如何實現、訓練和調試自己的神經網絡,并建立起對計算機視覺領域前沿研究方向的詳細理解。最后的任務將涉及訓練一個有數百萬參數卷積神經網絡,并將其應用于最大的圖像分類數據庫(ImageNet)上。
我們將著重教授如何設置圖像識別問題,學習算法(例如反向傳播),用于訓練和微調(fine-tuning)網絡的工程實踐技巧,引導學生完成實踐作業和最終課程項目。本課程的大部分背景知識和素材都來源于 ImageNet Challenge 競賽。
成為課后分享人
現在雷鋒網誠摯邀請正在學習CS231n課程的小伙伴來講解這門課的課后作業,這門課共有3個 Assignments 以及1個 Final Project ,你可以選擇其中一個或幾個來進行分享講解~詳情鏈接:http://cs231n.github.io/?
在后臺回復? 課后分享 ?,加入到分享課后作業的隊伍中來,還原算法過程,分享作業心得!同時,歡迎大家把學習筆記發布在雷鋒網mooc.ai/bbs?的博客區!寫得好的博客,會發布在我們的公眾號哦!
。
